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S| Methods

Computational Models. Reinforcement learning. Reinforcement
learning (RL) is concerned with learning predictions of the
future reward that will be obtained from being in a particular
state of the world or performing a particular action. In this paper
we use a simple RL model in which action values are updated via
a Rescorla-Wagner (RW) rule (1). On a trial ¢ in which action
a is selected, the value of action a is updated via a prediction
error &:

Vien =V + s, (1]

where 7 is the learning rate. The prediction error §, is calculated
by comparing the actual reward received R, after choosing action
a with the expected reward for that action:

& =R, -V} [2]

When choosing between two different states (a and b), the model
compares the expected values to select which will give it the most
reward in the future. The probability of choosing action a is

pe=fV =), [3]

where f(z) = 1/1 + e~ is the Luce choice rule (2) or logistic
sigmoid, and B reflects the degree of stochasticity in making the
choice (i.e., the exploration/exploitation parameter).

Fictitious play. In game theory, a first order fictitious play model
(3) is one in which a player infers the probability that the
opponent will choose one action or another, and then decides so
as to maximize the action’s consequent expected reward. The
opponent’s probability p* of choosing an action a’ is dynamically
inferred by tracking the history of actions the opponent makes:

Pir1=p: + 8, [41

where & = P, — p; is the prediction error between the oppo-
nent’s expected action p* and whether the opponent chose action
a' at time ¢ (P = 1), or chose another action (P = 0). Given the
opponent’s action probabilities p*, the expected value for each
of the player’s actions can be calculated using the payoff matrix
of the game. A stochastic choice probability can then be calcu-
lated using Eq. 3. For the inspection game described in this
paper, this can be summarized as follows: calling p the proba-
bility that the employee will work, and g the probability that the
employer will not inspect, and using the payoff matrix of the
game (Table 1—in the following formulations, payoffs were
express in 25 cent units for convenience), the decision of each
player is

p=f2-4q") [51
q=fGp" 1),

where ¢g* and p* are the inferred probabilities of the opponent’s
actions estimated using Eq. 4.

An equivalent formulation of fictitious play is one in which the
values of actions are learned directly as in reinforcement models,
instead of tracking the opponent player’s action probability. For
this, not only the value of the chosen action is updated with the
reward that was received (as in Eq. 1), but also all other actions
are penalized proportional to their foregone rewards (4, 5).
Either approach posits knowledge of the structure of the game
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to update the variable estimates and arrive at a correct expected
value for the actions of each player.

Experience Weighted Attraction (EWA): The EWA learing rule we
used here is a combination of Reinforcement Learning and
Fictitious play. It updates the value of a choice such that:

Ve =(1—mVe+n6R, + (1 8)Ry),

where R; is the reward obtained had action @ been chosen
(Fictitious learning), and R; is the reward given that action a was
chosen — zero otherwise (Reinforcement Learning). Some
variants of EWA also involve an additional parameter which
modulates the rate of learning at different points in the game,
such that it can be faster at the beginning of a game, and then
become slower as subjects settle into a strategy towards the end.
In this study we assumed cnstant learning throughout the game,
so did not include this additional parameter.

Influencing the Opponent. How much does a player’s next decision
change given the action of the opponent? Replacing the update
of the inferred opponent’s strategy (Eq. 4) in a player’s decision
(Eq. 5), and Taylor expanding (around n = 0),

Ap = — m4Bp,(1 = p)(Q, —q,) [6]
Ag = + 15Bq,(1 —q)(P, _p:)~

The sign difference in both terms is determined by the compet-
itive structure of the game; namely, that the employer wants to
inspect when the employee shirks, while the employee wants to
shirk when the employer does not inspect. A player can obtain
a more accurate inference of the opponent’s action strategy by
incorporating the influence his/her own action has on the
opponent. Thus, at the end of each trial both players update the
estimates of their opponent such that

Pis1 =P + mPr—p) — m4Bp, (1 —p)(Q: —q,) 7]
41 =q + MmO, —q,) + m5Bq, (1 — g)P,—p,);

where ¢** and p** are the inferred probabilities that the
opponent has of the player itself (second-order beliefs). Thus,
this gives two clear signals: the prediction error as the first term
and the influence update as the second term. The influence
update, or how much a player influences his/her opponent, is
proportional to the difference between the action a player took
and what the opponent thought was the player’s strategy. These
second order beliefs can be inferred by the player directly from
the inferred opponent’s strategy by inverting Eq. 5.

. 41 [1-gq
P —g—*log( 7 ) [8]

Behavioral Data Analysis. The RL, Fictitious play, and Influence
model decision probabilities p(action a or b)—the probability a
certain action would be taken predicted by the model (Eq.
3)—were fitted against the behavioral data y(action a or b)—the
actual behavioral choice made by the subject. The parameters of
each model were fitted against all subjects responses by maxi-
mizing the logistic log likelihood of the model predictions:
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with one set of parameters modeling the employer role, and
another the employee role. We used the multivariate constrained
minimization function (fmincon) of the Optimization Toolbox
2.2 in MATLAB 6.5 (MathWorks) to estimate the model
parameters given the log likelihood defined above.

The fitted parameters for each model are shown in Table S1.

fMRI Model Comparison: Voxel-Based Analysis. To compare the
explanatory power of signals predicted by two competing mod-
els, we fit both models simultaneously to the brain BOLD signals
(Fig. 2B) and then test for significance of a particular regressor
(in this case, a random effects ¢ test of the Influence model’s
expected reward signal). When testing a particular regressor for
significance, SPM uses the extra sum of squares test by compar-
ing the variance explained by a full model containing this
regressor to a partial model not containing that regressor, e.g.,
(SS(Influence + RL) — SS(RL))/MSE; where MSE = residual
error (6). In Fig. 2B, we report the additional variance explained
by value signals from the Influence model above and beyond that
explained by such signals from the RL model. It should be noted
that because the free parameters for each model were fit on the
behavioral data and not on the imaging data, the model com-
parison procedure on the imaging data are not affected by the
different number of parameters in the model-fits to the behav-
ioral data. Thus, there is no need to correct for different numbers
of free parameters in the models (using for instance AIC
methods) when performing the model-comparison procedure on
the fMRI data.

fMRI Model Comparison: ROI Analysis. A second approach consists
of fitting both models separately to brain activity in a region of
interest, and then comparing their regression coefficients to
determine which model provides a better account of neural
activity in this region. To test how well the expected reward
signals from each model predicted BOLD activity in mPFC we
extracted a deconvoluted time series at the time of trial onset
from all voxels in an 8 mm ROI centered on co-ordinates for
mPFC derived from the metaanalysis of Frith and Frith (7). The
process for extracting deconvoluted time series is explained in
the section on inter-region correlation analysis (see below). We
mean corrected and normalized the variance of the expected

. Rescorla RA, Wagner AR (1972) in Classical conditioning II: Current Research and
Theory, eds Black AH, Prokasy WF (Appleton-Centrury-Crofts, New York), pp 64-99.
2. Luce DR (2003) Response Times (Oxford Univ Press, New York).
3. Fudenberg D, Levine DK (1998) The Theory of Learning in Games (MIT Press, Cam-
bridge, MA).
4. McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive
learning task activate human striatum. Neuron 38:339-346.
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reward regressors from both models, and for each subject, fit
each model to the deconvoluted time series. The regression
coefficient of a particular model indicates how well the expected
reward signal from that model correlates with BOLD activity at
the time of trial onset. Thus, by comparing the Influence and RL
subject-wise regression coefficients we can determine whether
the Influence or the RL expected reward signals are a better
predictor of brain activity in this region of interest. This com-
parison was done using a pair-wise ¢ test across subjects.

Interregion Correlation Analysis. To compute inter-region corre-
lations as reported in Fig. 4, a representative time series was
obtained for each region by extracting and averaging BOLD
activity from 10-mm spheres centered in the group peak for
expected value in mPFC (=3, 63, 15 mm; see Fig. 24); in the
group peak for reward prediction errors in ventral striatum (9,
6, —18 mm, and —9, 9, —18 mm; see Fig. S3); and in the group
peak for influence error signals in STS (=57, —54, 0 mm, and 60,
—54, 9 mm; see Fig. 34). A general linear model with one
regressor for each trial (totaling 100 regressors) was then created
by convoluting a canonical hemodynamic response function with
a stick function centered at the time of trial onset. This model
was then fitted to the time series from each region of interest.
The regression coefficients thus represent the deconvoluted
neural activity for each trial of the game at the time of trial onset.
The deconvoluted activity from each region of interest was then
used to calculate the correlation between regions of interest at
that time point. The deconvolution and correlation process was
then repeated for each different time point within a trial to plot
the change in correlation between regions with respect to time
within a trial for all subjects scanned in this study.

We also investigated the degree to which the time series
extracted from STS and ventral striatum, as described above,
were a significant predictor of the time series extracted from
mPFC. In particular, we were interested in whether a linear
model containing signals from STS and ventral striatum pro-
vided more information when predicting activity in mPFC, than
did linear models which only contained signals from either STS
or ventral striatum. For example, to determine whether adding
STS as a regressor to a model that already contains ventral
striatum as a regressor was a better predictor of activity in mPFC
than the model with ventral striatum alone, we compared the
likelihood of the complete model (Lsts ystriatam) With the likeli-
hood of the incomplete model (Lystriatum). The difference in log
likelihoods (A = 2 log Lystriatum — 2 108 LsTs vstriatum) follows a
x> distribution with one degree of freedom. Thus, for each
subject scanned (and each game session), the probability of
whether adding information from STS provided statistically
significant information was calculated. A random effects statistic
across subjects was then calculated by converting these individ-
ual p-values to z-scores, and then performing a ¢ test across
subjects.
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learning signals in a sequential investment task. Proc Nat/ Acad Sci USA 104:9493-9498.
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Fig. S1. Out-of-sample model log likelihood. The out-of-sample model log likelihood controls for models having different number of free parameters when
fitting to behavioral data. Models were trained with the first 70 trials for each subject and then tested on the last 30 trials to obtain an out-of-sample log
likelihood. The influence model accounts for subjects’ behavior the best, with an out-of-sample log likelihood of 0.674 + 0.004, followed by the fictitious play
model with 0.685 *+ 0.003 and the RL model with 0.687 + 0.003.
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Influence > RL in Temporal Pole and STS

Fig. S2. Model comparisons with respect to the processing of expected reward signals in the brain. The influence model expected reward signals that are not
explained by (orthogonal to) the RL model expected reward signals also activate the right STS, including the right temporal pole at P < 0.001 uncorrected.
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Fig. S3. Prediction error signals. The prediction error signals generated by the influence model were correlated with activity in the ventral striatum bilaterally
(9,6, —18 mm, z =4.97; 9,9, —18 mm, z = 4.73, both P < 0.05 whole-brain corrected), mPFC (-9, 57, 6 mm, z = 4.35), and paracingulate cortex (12, 36, 18 mm,
z = 4.62). This lends support to the suggestion that mPFC is not only involved in calculating expected reward signals derived from inference of the opponent’s
game strategy (Fig. 2 A), but is also involved in the update of the inferred opponent’s strategy through prediction errors (this figure) and influence updates (Fig.
3B).
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Table S1. Fitted parameters

Model Parameter Employer Employee
RL B 0.011 0.025

n 0.16 0.11
Fictitious play B 0.036 0.056

1 0.22 0.10
Influence model B 0.090 0.059

n 0.21 0.038

K 0.0011 0.043
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